Geographically Weighted Regression
gwr(.ref, ...)
# S3 method for character
gwr(
.ref,
.tar,
varid = NULL,
coordinates = smpds::CRU_coords,
res = 0.5,
xy_buffer = 1.5,
z_buffer = NA,
cpus = 1,
bandwidth = 1.06
)
# S3 method for numeric
gwr(
.ref,
.tar,
coordinates = smpds::CRU_coords,
res = 0.5,
xy_buffer = 1.5,
z_buffer = NA,
cpus = 1,
bandwidth = 1.06
)
This function was adapted from a code developed by Yunke Peng (yunke.peng@usys.ethz.ch) - ETH Zürich: https://github.com/yunkepeng/gwr
Reference data from which the data will be interpolated (see the details section).
arguments to be passed to other functions
Table with geographical target data, including: latitude
,
longitude
and elevation
.
String with the identifier of the main variable inside the
NetCDF file pointed by .ref
(if applicable).
Reference data set with columns for latitude
,
longitude
and elevation
. Default:
CRU_coords
.
Numeric value for the mask resolution. Default: 0.5 degrees.
Numeric value to be used as the boundary for the search
area in the x
and y
axes.
latitude
< .tar$latitude + xy_buffer
latitude
> .tar$latitude - xy_buffer
longitude
< .tar$longitude + xy_buffer
longitude
> .tar$longitude - xy_buffer
Numeric value to be used as the boundary for the search area
in the z
axis:
elevation
<= .tar$elevation * z_buffer
elevation
>= .tar$elevation / z_buffer
Number of CPUs to be used in parallel, default = 1.
bandwidth used in the weighting function, possibly
calculated by gwr.sel
Table with interpolated values from the .ref
data for each
record/row in .tar
.
The input reference data can be in any of the following formats:
Matrix
: this should be a 3-dimensional object with spatial
components (latitude and longitude) and a temporal component for
representing each time step to be used for the extraction of the data.
String
: this should point to a valid path on disk where the
reference NetCDF file is stored. Note that the parameter called varid
should be used to indicate the identifier of the main variable inside the
NetCDF file (e.g., "tmp"
, "pre"
, "cld"
, etc.).
Peng, Y., Bloomfield, K.J. and Prentice, I.C., 2020. A theory of plant function helps to explain leaf‐trait and productivity responses to elevation. New Phytologist, 226(5), pp.1274-1284. doi:10.1111/nph.16447
if (FALSE) {
`%>%` <- magrittr::`%>%`
data <- tibble::tibble(entity_name = "University of Reading",
latitude = 51.44140,
longitude = -0.9418,
elevation = c(61, 161, 261, 361))
smpds::gwr(.ref = "/path/to/reference-tmp.nc",
.tar = data,
varid = "tmp")
ncin <- ncdf4::nc_open("/path/to/reference-tmp.nc")
reference_data <- ncdf4::ncvar_get(ncin, varid)
ncdf4::nc_close(ncin)
reference_data %>%
smpds::gwr(.tar = data)
}