Obtain biome names from the map created by
Hengl et al. (2018)
,
using the ID_BIOME
.
biome_name(.data, ...)
# S3 method for tbl_df
biome_name(.data, ...)
# S3 method for numeric
biome_name(.data, ...)
Numeric vector or data frame (tibble
object with a column
called ID_BIOME
) with values linked to a biome provided by the
map created by
Hengl (2018)
.
(See pnv_classes
).
Optional parameters (not used).
Table (tibble
object) with biome metadata.
Hengl T (2018).
“Global Maps of Potential Natural Vegetation at 1 km resolution.”
doi:10.7910/DVN/QQHCIK
.
Hengl T, Walsh MG, Sanderman J, Wheeler I, Harrison SP, Prentice IC (2018).
“Global mapping of potential natural vegetation: an assessment of machine learning algorithms for estimating land potential.”
PeerJ, 6, e5457.
doi:10.7717/peerj.5457
.
Other utils biome:
extract_biome()
,
plot_biome()
`%>%` <- magrittr::`%>%`
data <- tibble::tibble(entity_name = "University of Reading",
latitude = 51.4414,
longitude = -0.9418)
data %>%
extract_biome() %>%
biome_name()
#> Error in loadNamespace(x): there is no package called ‘rgdal’
biome_name(1:10)
#> # A tibble: 7 × 3
#> ID_BIOME description colour
#> <dbl> <chr> <chr>
#> 1 1 tropical evergreen broadleaf forest #1C5510
#> 2 2 tropical semi-evergreen broadleaf forest #659208
#> 3 3 tropical deciduous broadleaf forest and woodland #AE7D20
#> 4 4 warm-temperate evergreen broadleaf and mixed forest #000065
#> 5 7 cool-temperate rainforest #BBCB35
#> 6 8 cool evergreen needleleaf forest #009A18
#> 7 9 cool mixed forest #CAFFCA