TWA-PLS training function, which can perform fx
correction.
1/fx
correction will be applied at step 2 and step 7.
TWAPLS.w2(
modern_taxa,
modern_climate,
nPLS = 5,
usefx = FALSE,
fx_method = "bin",
bin = NA
)
The modern taxa abundance data, each row represents a sampling site, each column represents a taxon.
The modern climate value at each sampling site.
The number of components to be extracted.
Boolean flag on whether or not use fx
correction.
Binned or p-spline smoothed fx
correction: if
usefx = FALSE
, this should be NA
; otherwise,
fx
function will be used when choosing "bin";
fx_pspline
function will be used when choosing "pspline".
Binwidth to get fx, needed for both binned and p-splined method.
if usefx = FALSE
, this should be NA
;
A list of the training results, which will be used by the predict function. Each element in the list is described below:
fit
the fitted values using each number of components.
x
the observed modern climate values.
taxon_name
the name of each taxon.
optimum
the updated taxon optimum
comp
each component extracted (will be used in step 7 regression).
u
taxon optimum for each component (step 2).
t
taxon tolerance for each component (step 2).
z
a parameter used in standardization for each component (step 5).
s
a parameter used in standardization for each component (step 5).
orth
a list that stores orthogonalization parameters (step 4).
alpha
a list that stores regression coefficients (step 7).
meanx
mean value of the observed modern climate values.
nPLS
the total number of components extracted.
fx
, TWAPLS.predict.w
, and
WAPLS.w
if (FALSE) {
# Load modern pollen data
modern_pollen <- read.csv("/path/to/modern_pollen.csv")
# Extract taxa
taxaColMin <- which(colnames(modern_pollen) == "taxa0")
taxaColMax <- which(colnames(modern_pollen) == "taxaN")
taxa <- modern_pollen[, taxaColMin:taxaColMax]
# Training
fit_t_Tmin2 <- fxTWAPLS::TWAPLS.w2(taxa, modern_pollen$Tmin, nPLS = 5)
fit_tf_Tmin2 <- fxTWAPLS::TWAPLS.w2(
taxa,
modern_pollen$Tmin,
nPLS = 5,
usefx = TRUE,
fx_method = "bin",
bin = 0.02
)
}